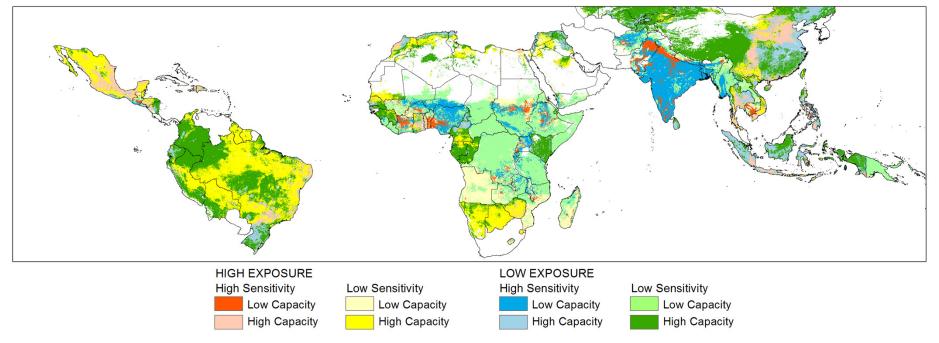
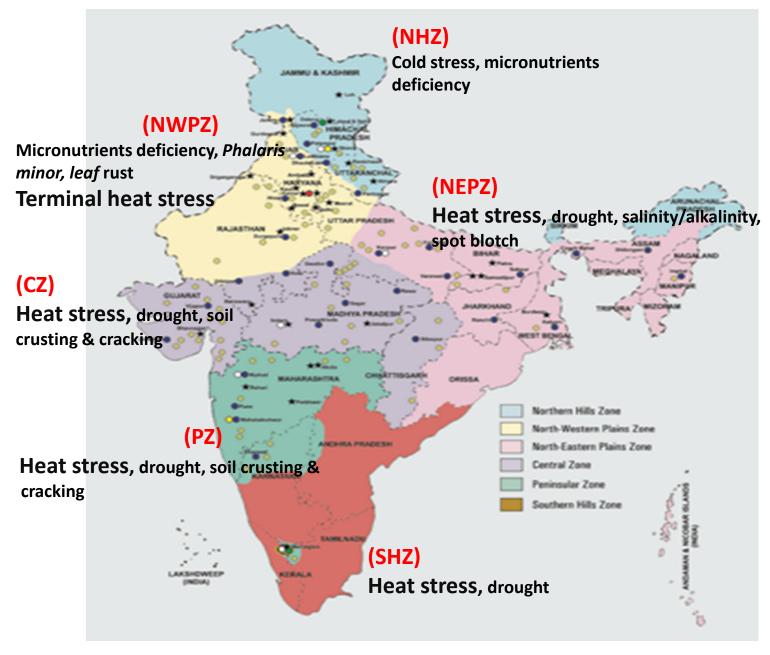


K C Bansal



National Bureau of Plant Genetic Resources Pusa Campus, New Delhi, India www.nbpgr.ernet.in

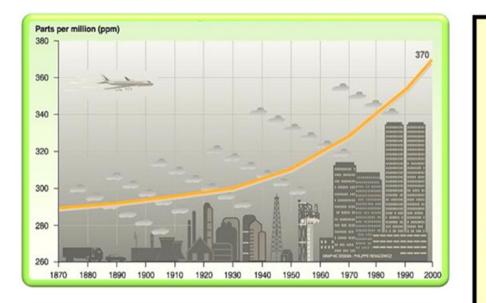
Challenges facing Agriculture


- Climate change
- Shrinking availability of natural resources
 - Land
 - Water
- Biotic and Abiotic Stress factors
- Malnutrition
- Sustainability in Agricultural production

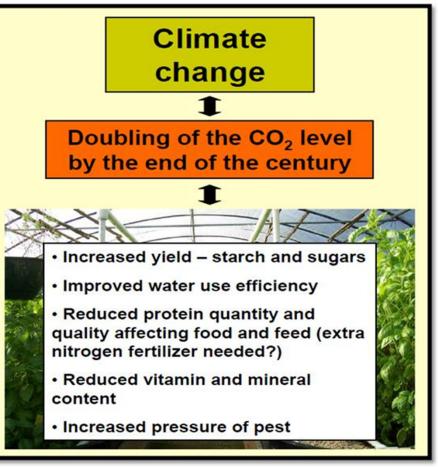
Most climate change studies project significant decrease in crop yields in South Asia

(Source: Erickson et al., 2011)

Wheat growing zones of India and constraints in wheat production


Climate change impact on wheat

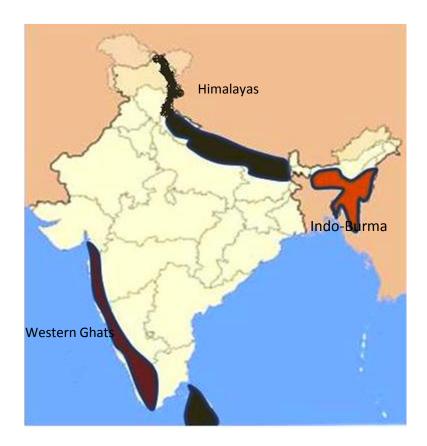
- Increase in 1-3^oC temperature may reduce yield up to 10% by 2020 in Asia (IPCC)
 - 5-7 % decline in wheat yield for every degree increase in temperature
- Adaptation and mitigation strategy
 - Development of heat tolerant varieties
 - Changes in crop management practices, including use of water saving technologies
 - Weather forecasting and risk management measures

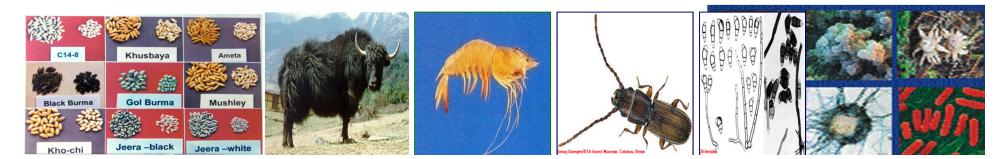

Major constraints for wheat productivity enhancement in India

- Heat stress
- Shrinking water and land resources
- Breeding constraints
 - Lack of screening and phenotyping methodologies
 - Lack of pre-breeding efforts
 - Narrow genetic base

Effect of Enhanced CO₂

Change in insect-pest dynamics




Twin Pillar Strategy

Germplasm evaluation for widening Genetic base Pre-Breeding & Development of Climate-resilient varieties

India - A gene rich region

- One of 12 world mega biodiversity centres, 17 mega diversity nations
- Three of the 34 Hot Spots of Biodiversity
 - Himalayas, Indo-Burma region, Western Ghats & Srilanka
- Western Ghats, the hottest spot with 68% endemic freshwater fish species
- 162 breeds of domesticated animals
- 10% of world's microbes, 6% of insects, 12% of birds and 20% of lower plants

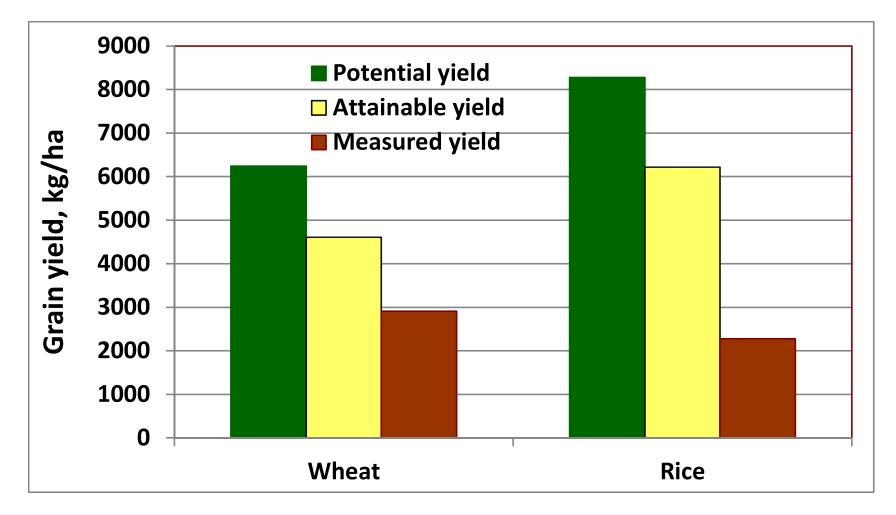
PGR Conservation at National Genebank NBPGR, New Delhi, India

Crop Group	Present status*	
Cereals	1,50,173	
Millets and Forages	55,171	
Pseudo cereals	6,657	
Grain legumes	57,243	
Oilseeds	55,803	
Fiber Crops	11,535	
Vegetables	24,377	
Fruits	530	
M & A P & Narcotics	6,404	
Spices & Condiments	2,894	
Agro-Forestry	2,442	
Safety Duplicate	10,235	
Grand Total	3,97,829	
*The figure includes 3777 released varieties		

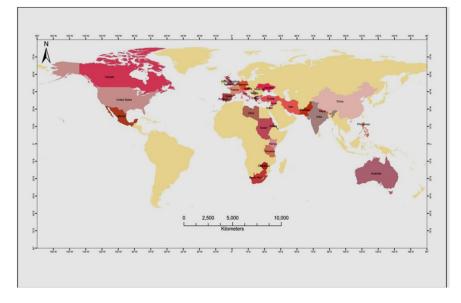
*The figure includes 3777 released varietie and 2024 Genetic stocks

Enhanced Agricultural Production by Enhanced Utilization of PGR

Trait Crop	Biotic stress	Abiotic stress	Nutritional quality	Earliness /Photo- and thermo insensitivity
Rice	***	***	**	*
Wheat	***	***	**	**
Maize	*	**	***	
Finger millet	*	*	***	**
Pearl millet	*	* * *		
Sorghum	* * *	**		
Chickpea	***	**	*	
Pigeonpea	***	**		**
Rapeseed	***	**	**	
mustard				
Brinjal	***	*		
Okra	***			
Cucumber and	***	*	*	
Melons				
Mango	***		**	**
Citrus	***		*	
Banana	***			

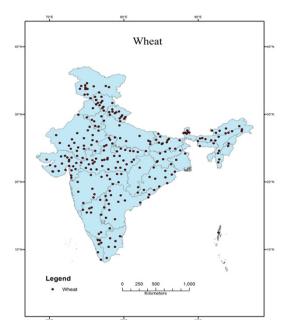

PGR Utilization by Breeders for Crop Improvement

Gaps


- Narrow genetic base of breeding material
 - Over-reliance on own working collection
 - Greater reliance on international nurseries / trials
 - Reluctance to use PGR in the breeding programmes
- Lack of long-term strategy for broadening genetic base
- Poor characterization and evaluation status of germplasm

Adapting to climate change and heat stress in wheat and rice:

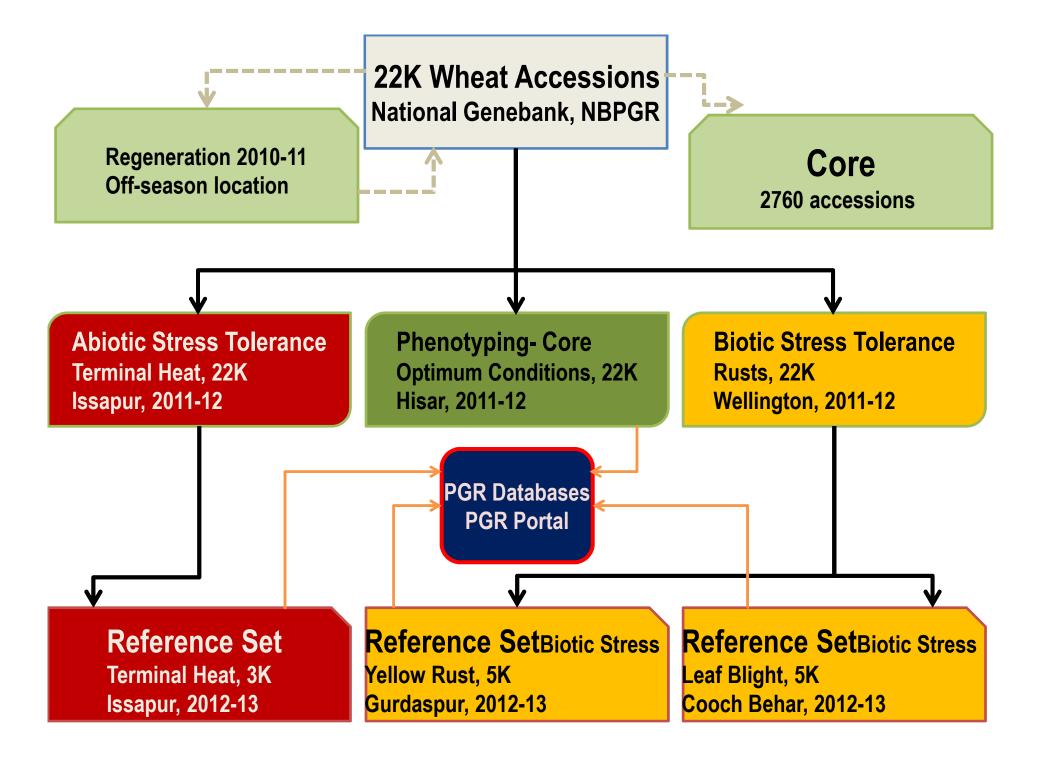
Make full use of untapped potential of available germplasm

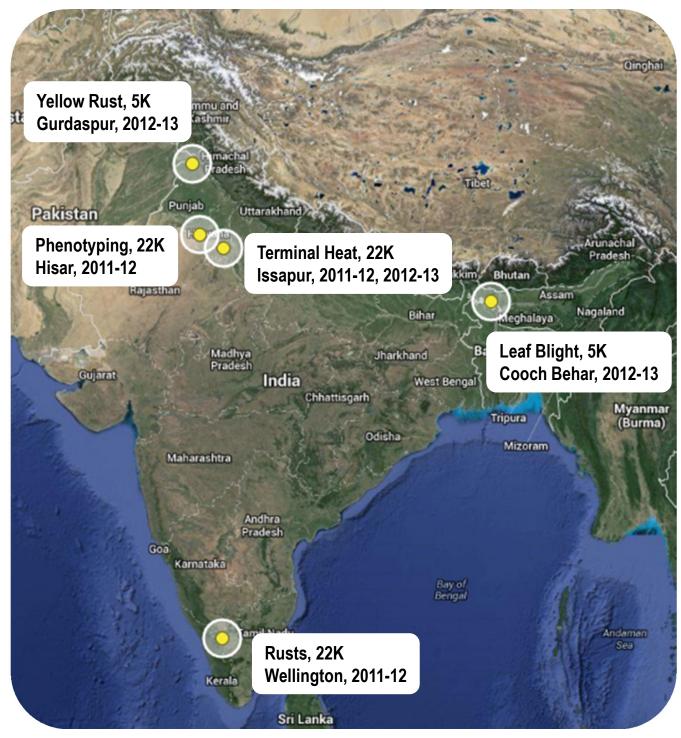


Wheat collection from different parts of the world are conserved in National Gene Bank of NBPGR

Continents	No. of accessions
Africa	166
Asia	524
Australia	322
Europe	190
North America	855
South America	1482
Others	380


Agro-climatic zones	No. of accessions
NWPZ	2187
NEPZ	67
CZ	366
PZ	327
NHZ	2272
SHZ	24




NBPGR's Initiative : Identification of Trait-specific Germplasm for wheat Improvement

NBPGR has characterized and evaluated entire set of about 22,000 wheat accessions

Characterization and evaluation of entire set of about 22,000 wheat accessions at different Locations in India

Characterization and evaluation of wheat germplasm

- Augmented Block Design
- Three rows of each accession

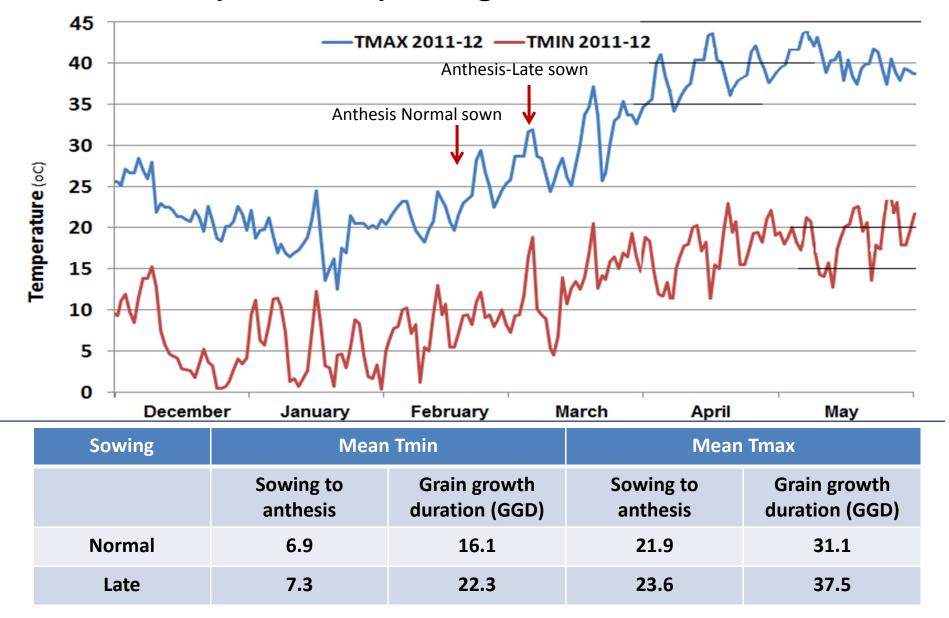
✤8 check varieties -PBW343, Raj-3765, DBW-17, C-306, DDK1025, DDK1029, UAS-415, DWR 1006 for respective species

Wheat genetic variability at its best (2011-12)

Germplasm Evaluation for Terminal Heat Tolerance at Issapur, New Delhi (2011-12)

Augmented Block Design
Single row (2.0 m)
8 national checks for the

respective species


ſ	FOR TERMIN	ENING OF WHEAT GERMPLASM AL HEAT TOLERANCE (NBPGR - NICRA)
	Accessions	21,407 (T.aestivum-17795, T. turgidum ssp. duram - 3481, T. tugidum ssp. dicoccum - 161)
	Checks	8 T. aestivum: DBW 17, C 306, Kharchia 65, Raj 3766 T. turgidum ssp. durum: DWR 1006, USA 415 T. turgidum ssp. diccoccum: DDK 1029, DDK 1025
	Experimental design	Augmented Block Design (ABD)
	Rows/accession	Single row (2 m)
	Row spacing	30 cm
	Time of sowing	First week of January, 2012

Preliminary evaluation of wheat germplasm for terminal heat tolerance

Location: NBPGR Farm, Issapur Longitude 76 50', Latitude 28 40'

Timely Sown (First week of December, 2011)					
1	Triticum aestivum	17751			
2	T. durum	3528			
3	T. dicoccum	166			
	Total	21445			
Late Sown (F	Late Sown (First week of January, 2012)				
1	Triticum aestivum	17709			
2	T. durum	3528			
3	T. dicoccum	166			
	Total	21403			
	Design	Augmented Block Design			
	Checks (8)	Kharchia 65, Raj 3765, DBW 17, C 306, DDK 1025, DDK 1029, UAS 415, DWR 1006			

Daily maximum and minimum temperature at Issapur Farm (New Delhi) during *rabi* season 2011-12

Trait variability in germplasm

IC532007

IC531999

IC532004

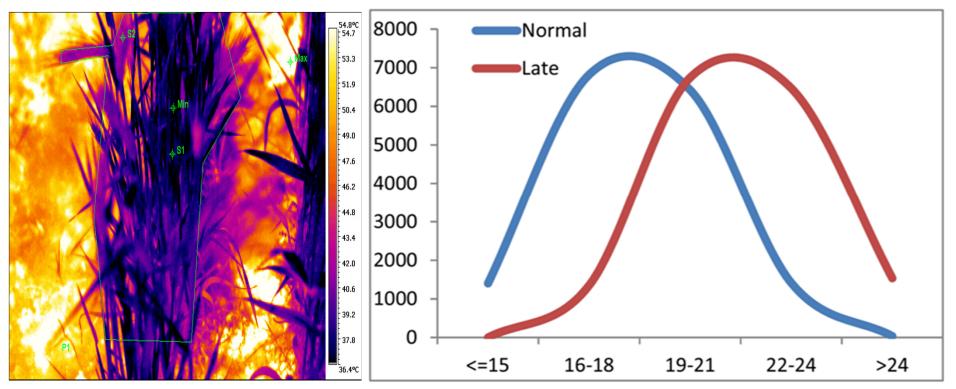
Growth habit; chlorophyll content

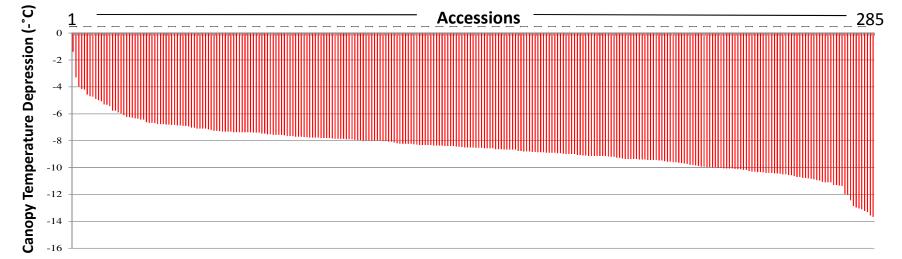
Leaf epicuticular wax

Trait variability in germplasm

IC531993

Erect flag leaf; Drooping flag leaf


Awn length


IC128215

IC82434

IC535412

Canopy temperature and CTD during grain filling

Promising accessions based on grain yield and grain weight stability

Heat susceptibility Index						
Acc. No.	Effective Tillers	Biological Yield	Grain yield	Grains per spike	Grain weight	% reduction in GW
EC573561	0.50	0.08	0.00	0.32	0.31	8.0
IC443707	0.39	0.06	0.00	0.45	0.45	11.4
IC443660	0.13	0.29	0.00	0.87	0.87	22.0
IC402028	0.52	0.08	0.00	0.49	0.49	12.5
EC575437	0.72	0.36	0.00	0.62	0.62	15.6
IC416129	0.48	0.23	0.00	0.44	0.44	11.2
EC576853	0.48	0.71	0.00	0.36	0.36	9.0
EC574839	0.48	0.71	0.00	0.36	0.36	9.0
IC539274	0.55	0.90	0.02	0.31	0.31	7.8
EC256465	0.71	0.06	0.02	0.35	0.35	8.9
IC572928	0.30	0.08	0.11	0.33	0.33	8.3
IC547640	0.30	0.22	0.18	0.81	0.81	20.5

In tolerant genotypes, sensitivity in one yield component is compensated by tolerance in other yield components

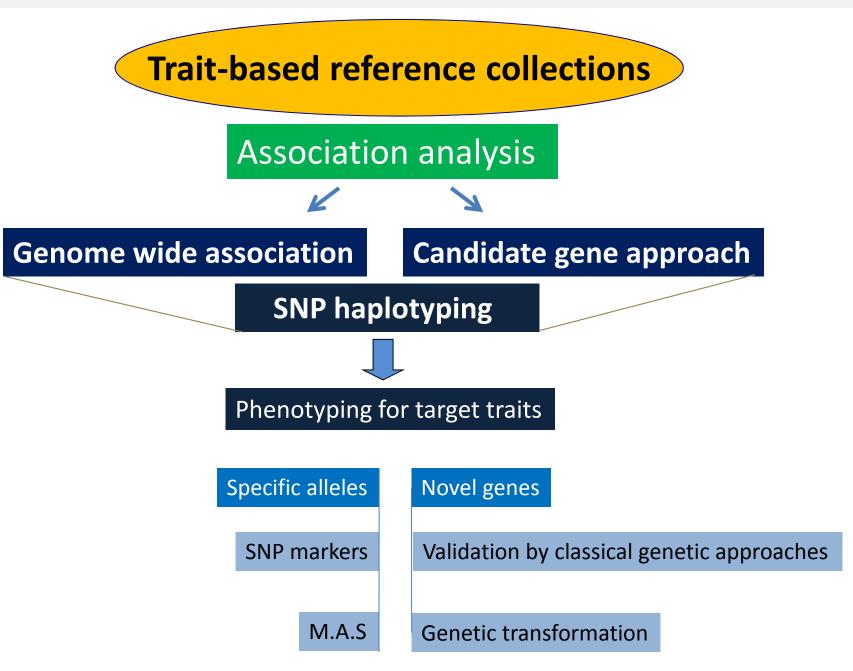
Reference Set for Terminal Heat Tolerance

3,019 wheat accessions were selected based on 5 parameters (canopy temperature depression, leaf waxiness, days to maturity, grain yield per plant and 100 seed weight) related to Terminal Heat Tolerance, and **further validated at NBPGR, Issapur farm during** *Rabi* 2012-13.

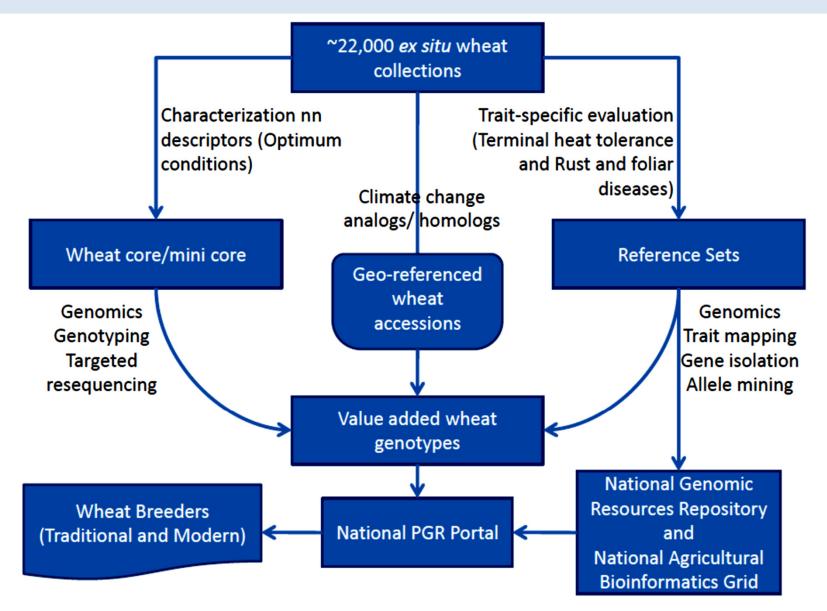
Reference Set for Terminal Heat Tolerance (*Rabi* 2012-13)

•A set of 3202 wheat accessions with wide variation for **canopy temperature depression, leaf waxiness, days to maturity, grain yield per plant** and **1000 seed weight** were evaluated under terminal heat stress under two sowing dates during Rabi 2012-13 at NBPGR, Issapur.

Identification of Germplasm for Tolerance to Biotic Stresses at Wellington


Total wheat accessions assayed phenotypically	20683
Accessions resistant to stem rust	19179
Accessions resistant to leaf rust	6263
Accessions resistant to stripe rust	12339
Accessions resistant to stem and leaf rust	6082
Accessions resistant to stem and stripe rust	11580
Accessions resistant to leaf and stripe rust	5238
Accessions resistant to stem, leaf and stripe rust	5081
Accessions resistant to powdery mildew	8516

Reference Set for Biotic Stress Tolerance


From the initial screening of 20,660 wheat accessions at Wellington, a set of 5,081 accessions was identified as tolerant to stem, leaf and stripe rusts. These lines have been further validated at PAU, Gurdaspur, Punjab (NWPZ) and UBKV, Cooch Behar, West Bengal (NEPZ) during Rabi 2012-13 and 513 accessions have been indentified as tolerant to multiple diseases.

Application of Genomics Tools

Roadmap

More than 90% germination observed...

1 TT 11 0

NBPGR Farms, New Delhi Dec. 12-16, 2011

Large scale characterization and evaluation of germplasm

Research Leadership Award Conferred on NBPGR

has resulted in the identification of several new accessions of wheat and chickpea that are not only highly tolerant to abiotic stresses but are also resistant to multiple diseases. This novel genetic material is now available to the breeders for combining resistance to multiple stresses with high yield and sustained crop production in the country. The pioneering work of NBPGR on large scale characterization and evaluation of PGRs has become of great significance especially in the situation of climate change and its impact on agriculture. NBPGR is extending this activity to more priority crops like rice, maize, mustard, and pigeon pea for ensuring food and nutritional security.

> 19 September, 2012 New Delhi

2%

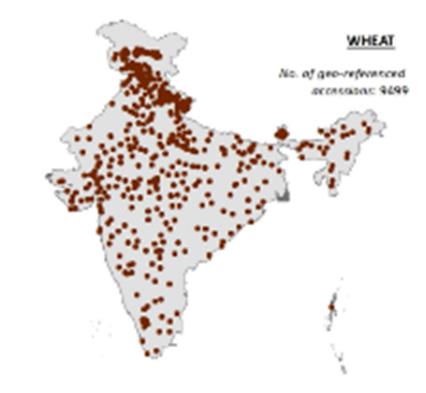
25

Summary

- Wide variability was found in the gene pool for heat tolerance and other agronomic traits that can be used for wheat improvement.
- Heat stress under delayed sowing reduces grain yield due to reduction in biomass (due to reduced tillering), grains per spike and grain weight, while harvest index was unaffected.
- Wheat germplasm showed very high variability for these traits and accessions with high stability for these component traits have been identified.
- Canopy temperature has a negative effect on grains per spike and grain weight, and thus genotypes with very high CTD identified in this study will be useful in stabilizing these yield components under heat stress.
- ~2000 germplasm lines showing less than 10% yield reduction have been identified. These lines will be greatly useful as donors as well as for identification of genes/ QTLs for heat tolerance in various component traits.

Future Plan

- The trait specific reference set for terminal heat tolerance developed in this project will be utilized for association mapping and/or Linkage mapping, and allele mining for target trait.
- Identified germplasm lines with higher level of heat tolerance can be included as a donor parent in breeding program for developing new promising heat tolerant wheat cultivars.


Utilization of *ex situ* collection using climate analogues for enhancing adaptive capacity to climate change

Crops:

Wheat
 Pearl millet
 Sorghum
 Chickpea
 Pigeonpea

Potential of Underutilized Crops

Amaranth

Rice bean

Perilla

Tumba

Minor cereal: Job's tear; Pseudocereals: Amaranth, Buckwheat, Chenopods; Legumes: Adzuki bean, Faba bean, Rice bean & Winged bean; Oilseeds: Perilla & Paradise tree; Vegetables: Kankoda & Kalingada; Industrial crops: Jatropha &Tumba

Buckwheat

Kankoda

Kalingada

Jatropha 41

Global Consultation on Use and Management of Agrobiodiversity for Sustainable Food Security 12-14 February, 2013

Priority areas identified for South-South cooperation and an operational roadmap for strengthening partnership in conservation and utilization of genetic resources developed

11/19/2013

Acknowledgements

NBPGR, New Delhi, December 13, 2011

Wheat at CCSHAU Farms, Hissar, Haryana

ICAR – NICRA

Dr. RS Paroda, Chairman NABMGR

Dr. S Ayyappan, DG ICAR Prof SK Datta, DDG (CS) Dr. JS Sandhu, ADG (Seed)

Dr. HS Gupta, Director, IARI Dr. Mrs M Dadlani, JDR, IARI Dr. Jagdish Kumar, Head, Wellington RS, IARI

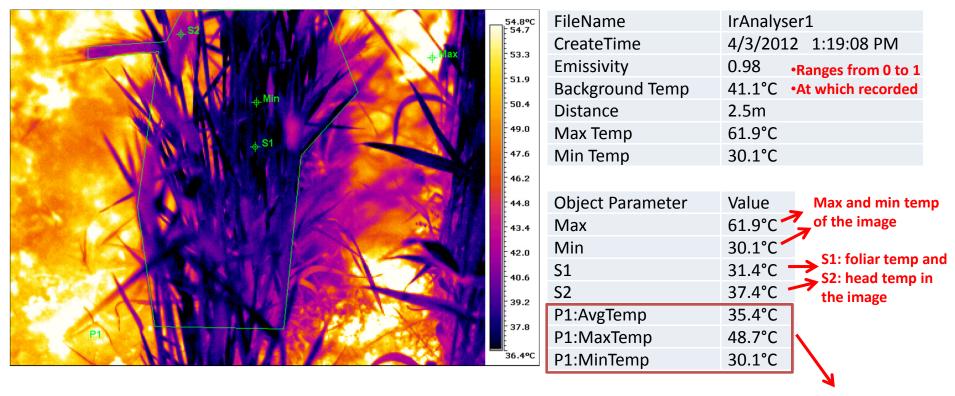
CIMMYT

Dr. Hans Braun Dr. Ravi B Singh Dr. Arun Joshi

Dr. Mathew Reynolds Dr. Alistair Pask

ICARDA

NBPGR scientists and staff


Dr. KS Khokhar, VC, CCSHAU, Hissar Dr. BS Dhillon, VC, PAU, Ludhiana

Dr. SS Singh, ex-Project Director, DWR Dr. Indu Sharma, PD, DWR

Thank You

Infrared Image analysis

Avg, max and min temp of the POLYGON